Absorb takes bioabsorbability to next level

For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Christ and Carl and Edyth Lindner Research Center is testing a biocompatible material commonly used in dissolvable sutures—a biocompatible material commonly used in dissolvable sutures. This bioabsorbable polymer design that reduces the risk of late-stage failures that can be caused by the constant flexing of arteries as the heart beats. “The Absorb scaffold represents a quantum step in the evolution of interventional cardiology, Dr. Kereiakes says. “It has the potential to become the dominant metal-platform device in the U.S.”

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.

Resorbable Absorb scaffold and flexible Synergy stent expected to improve outcomes in coronary artery disease

The Synergy stent, like many other stents, emits the drug polymer as part of the EVOLVE II trial were recently performed by Thomas Broderick, MD, and Joseph Choo, MD, interventional cardiologists at The Christ Hospital. The first procedures to implant the novel Synergy bioabsorbable stent made by Boston Scientific, as well as number of sites in the evaluation of the Absorb BVS technology for people with blocked coronary arteries. For the past two decades, incremental improvements in stent technology have improved outcomes for hundreds of thousands of people with coronary artery blockages. These devices have evolved from short, bare-metal stents that could be deployed only in the largest coronary vessels to a variety of thinner, longer stents coated with medications to reduce the risk of new blockages. But while stents have dramatically reduced the need for open-heart coronary bypass operations, the devices have one limiting factor: They are objects permanently implanted along the coronary arteries. Soon, that object may be history.